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ABSTRACT

SKELETONIZATION OF 2D AND 3D SHAPES VIA INCREMENTAL
CARVING OF THE SHAPE DOMAIN

Çağlar, Gürkan

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Sibel Tarı

Co-Supervisor: Assist. Prof. Dr. Aslı Gençtav

January 2023, 59 pages

Extracting skeletons of 2D and 3D shapes is important for obtaining a compact repre-

sentation of shapes, which later can be utilized in various areas such as shape match-

ing, retrieval, deformation, animation, medical imaging, virtual endoscopy and so on.

In this thesis, we present a new family of smooth distance transforms what we call as

vk field, which enables exploration of the shape domain by incrementally carving it

from inside out. Our field is applicable to both 2D and 3D shapes. After analyzing

expansion of vk field inside the shape domain, we develop a method for constructing

curve skeleton of 2D and 3D shapes. Our skeletonization method does not require

thinning and the skeletons produced by our method are thin and robust to noise. We

present and discuss our skeletonization results for several 2D and 3D shapes with

comparison to other skeletonization methods.

Keywords: Shape Representation, Skeletonization, Curve Skeletons
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ÖZ

ŞEKİL ALANININ ARTIMLI OYULMASI YOLUYLA 2B VE 3B
ŞEKİLLERİN İSKELETLEŞTİRİLMESİ

Çağlar, Gürkan

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Sibel Tarı

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi. Aslı Gençtav

Ocak 2023 , 59 sayfa

2B ve 3B şekillerin iskeletlerini çıkarmak, daha sonra şekil eşleştirme, geri alma,

deformasyon, animasyon, tıbbi görüntüleme, sanal endoskopi ve benzeri çeşitli alan-

larda kullanılabilen, şekillerin kompakt bir temsilini elde etmek için önemlidir. Bu

tezde, vk alanı olarak adlandırdığımız ve şekil alanının içten dışa doğru adım adım

oyularak keşfedilmesini sağlayan yeni bir yumuşak mesafe dönüşümleri ailesi sunu-

yoruz. Alanımız hem 2B hem de 3B şekillere uygulanabilir. Şekil alanı içindeki vk

alanının genişlemesini analiz ettikten sonra, 2B ve 3B şekillerin eğri iskeletini oluş-

turmak için bir yöntem geliştirdik. İskeletleştirme yöntemimiz inceltme gerektirmez

ve yöntemimizle üretilen iskeletler ince ve gürültüye karşı dayanıklıdır. Çeşitli 2B

ve 3B şekiller için iskeletleştirme sonuçlarımızı diğer iskeletleştirme yöntemleriyle

karşılaştırmalı olarak sunuyor ve tartışıyoruz.

Anahtar Kelimeler: Şekil iskelet çıkarma, eğri-iskelet, iskeletlendirme
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positive encouragement and constructive comments. Also I am grateful to Assist.

Prof. Dr. Venera Adanova for her valuable comments and support.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Skeletons of shapes are one of the most prominent topics for image processing and

computer vision. The importance of the topic stems from the demand to extract com-

pact and useful features of the 2D and 3D shapes, namely, their skeletons. Many

fields from various disciplines (e.g., animation, medical imaging, virtual endoscopy,

shape matching, shape retrieval, shape tracking, shape manipulation, shape recogni-

tion, etc.) implement a solution for skeleton extraction. Extracting the skeleton of a

shape is also called "skeletonization".

Skeletonization is the task of constructing the distilled features of a shape, namely,

its descriptor. An analogy, which is referred to ubiquitously in this field, comes from

[8]; the grass fire analogy, in which a dry grass field, burning from its boundary,

forms the skeleton when the fire fronts meet and quench at certain places. Although

the field of skeletonization of 2D shapes is quite mature and well-researched, that

of skeletonization of 3D shapes has a lot of unexplored research topics; therefore,

the field of 3D shapes still needs further research. Specifically, obtaining the most

compact representation of an arbitrary 3D object has proved itself to be a challenging

problem; this representation is called a "curve-skeleton" of a shape.

As explained in [9], "curve-skeletons are a subset of the medial surface of a 3D

object", which could be beneficial for shape demonstration and representation; for

example, reduced-model formulation, visualization enhancement, mesh repair, and

virtual navigation. The difficulty and so-called “ill-defined" objective of the curve-

skeleton extraction has forced the literature to focus on very specific shapes with lim-
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ited robustness, narrow-scope heuristics, and unclear generalization performances. In

other words, some methods demonstrate remarkable results on tubular shapes, while

others outperform for shapes with vast areas. Some methods show counter-intuitive

under-performance for trivial shapes (e.g. a rectangular slab) whose curve-skeleton

can be very well-defined by their geometric structure. Some methods are unable to

generalize for both 2D and 3D objects or when noise is introduced to the shape.

Our method, on the other hand, is applicable to both 2D and 3D shapes, and it is ro-

bust to boundary texture/noise. Furthermore, it has the capability of representing the

boundary texture/noise with small skeletal segments. The main tool in our method

is a smooth distance field defined on the shape domain where iso-curves/iso-surfaces

of the field provide useful information about the shape. We start with computing the

smooth field on the whole shape domain. Then, we carve the shape domain from

the point at which the smooth field has its maximum value, which roughly marks

the innermost point of the shape. After computing the smooth field on the carved

shape domain, we expand the carving according to the hills and valleys of the field

between the carved region inside the shape and the background region outside the

shape. The iso-curves/iso-surfaces of the smooth field determine not only the expan-

sion of the carving but also the constituent parts of the shape remaining after carving.

In the first row of Figure 1.1, we illustrate the expansion of the carving at sample

levels for an example 3D shape. In the second row of Figure 1.1, we see parts of the

shape outside the carved region at these sample levels where the parts are obtained

via iso-surfaces of the smooth field computed on the corresponding shape domain

remaining after carving. Notice that, at level 3 shown in Figure 1.1 (a), there are two

parts corresponding to the front and back of the shape. As the level increases, these

parts are partitioned further (see level 5 in Figure 1.1 (c)). We construct a skeletal

representation of a 2D/3D shape by considering the relations among the parts of the

shape outside the carved region at consecutive levels. Our skeletonization method in-

volves four steps, namely, determining skeleton points, linking the skeleton points at

consecutive levels, pruning the links from the skeletal branches modeling the bound-

ary texture/noise to the main skeletal graph, and re-connecting the skeletal branches

modeling the shape regions with a significant size determined by a parameter κ. In

Figure 1.2, we present our skeletonization result for the 3D shape in Figure 1.1 af-
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(a) (b) (c)

Figure 1.1: For a 3D hippopotamus shape, the carved region is visualized in the first

row and parts of the shape outside the carved region are visualized in the second row

at levels (a) 3, (b) 4, and (c) 5.

Figure 1.2: Our skeletonization result for the 3D hippopotamus shape (a) after prun-

ing, and (b) after re-connection (κ = 1/50).

ter pruning and re-connection steps. We see that all components of the shape are

successfully captured by our curve skeleton result.

Curve skeletons of 3D shapes can have several properties that make them "good" rep-

resentations. However, whether a curve skeleton is good or not depends on the needs

of the application in which it is to be used [10]. For example, curve skeletons could

be invariant under isometric transformations, which means that the skeleton of the

transformed shape should be compatible with the skeleton of the original shape. This

property is supported by our method and it is especially important for shape match-

ing applications in which the curve skeleton is used as a shape descriptor. Thinness

is another property meaning that the curve skeleton should be one voxel wide in all

3



of its length. This property is satisfied by our method and it is important for vir-

tual navigation applications such as virtual endoscopy. Another important property

for curve skeletons and also for virtual endoscopy is the smoothness of the skeletal

curves that determines the movement of the camera as it could cause abrupt changes

in the camera view. Considering our method, the smoothness of the curve skeletons

varies based on the shape. For some tubular shapes, our results are smooth whereas,

for others, it is not. Our method does not guarantee the smoothness of the resulting

skeleton. A property that our method complies well with is robustness, which means

that the curve skeleton should not be affected by the boundary noise and the resulting

skeleton should be similar for the original shape and its noisy version. Homotopy is

another property meaning that both the shape and its skeleton should be topologically

equivalent i.e. they should have the same number of tunnels, connected components,

and cavities [11]. This property is not yet supported by our method but making it ho-

motopic is future work. Reliability is another property referring that every boundary

point is visible from at least one curve skeleton location. The next property is cen-

teredness where, for most applications like virtual navigation and animation, relaxed

centeredness is enough. The last property is connectedness. For our method, any

skeletal segments not connected to the main skeletal graph are regarded as boundary

texture/noise and we could easily eliminate these segments.

1.2 Contributions

Our contributions are as follows:

• We present a new family of smooth distance fields that we call as vk field for

exploring the shape domain by incrementally carving it from inside out.

• vk field is applicable to both 2D and 3D shapes.

• vk field at a particular level shows the part-coding behavior of the smooth dis-

tance transform [1, 2] proposed by Tarı in 2009.

• By using vk field, we develop a new method for constructing curve skeleton of

2D and 3D shapes.

4



• Our skeleton model is robust to boundary texture/noise.

• Our skeletonization method produces thin curve skeletons without requiring a

thinning procedure.

1.3 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we review the literature

on extracting curve skeletons of 3D shapes. In Chapter 3, we present vk field as a new

family of smooth distance transforms providing exploration of the shape domain by

incrementally carving it from inside out. In Chapter 4, we present how we construct

curve skeleton of 2D and 3D shapes using vk field. In Chapter 5, we present and dis-

cuss results of our curve skeleton method for 2D and 3D shapes. Finally, conclusion

and future work for our method are given in Chapter 6.

5



6



CHAPTER 2

LITERATURE REVIEW ON CURVE SKELETON OF 3D SHAPES

In this section, we discuss some of the previous works on the extraction of curve

skeletons of 3D shapes. We categorize the methods under the sections defined by

[11], namely, thinning methods, geometric methods, and distance or general field

methods. However, the defined categories are not always mutually exclusive, nor they

are isolated; it is possible that methods from different categories can be orchestrated

into one method for curve-skeleton extraction.

2.1 Thinning Methods

Thinning methods work by removing excess voxels (only work on volumes but not

meshes) while preserving the topology of the shape with the given set of rules. These

methods rely on the concept of a simple point introduced in [12], which means the ex-

pandable point/voxel that does not damage the topology of the shape if it is removed.

The fact that these points are locally calculated makes the thinning methods fast.

Thinning methods start from the boundary and stop when there are no more simple

points to be removed. The removal of the simple points could result in a short skeleton

because the endpoints of the skeleton are also simple points [11]. One shortcoming of

these methods is that they do not guarantee centeredness since they are voxel-based

skeleton extraction methods and the center is sometimes decided between two voxels.

Thinning methods can utilize directional thinning, which implies that there is a certain

order to remove voxels while thinning and the order could not be skipped. To elabo-

rate on the directional thinning, an example can be given from the paper [13] which

has the order: "US; NE; WD; ES; UW; ND; SW; UN; ED; NW; UE; SD" where the

7



Figure 2.1: Direction Axis on the left, voxel edge naming on the right.

naming of the directions is shown in Figure 2.1. With this extended order (previous

methods work with six directions) and with the parallel nature of the method, they

manage to preserve the topology of the shapes.

Another shortcoming of the topological thinning methods, as are the others, are that

resulting skeletons are affected by noise but, in [14], they develop a method that alter-

nates between thinning and skeleton pruning. The candidates of the skeleton pruning

in this method are short curve branches, small surface branches, jagged surface bor-

ders, and narrow surface bands. The handicap of this method is that it expects two

specific user inputs related to the size of the curve and surface features but the method

performs well on cylindrical and plate-like shapes.

In another work [15] of this section, the authors propose a method that formulates a

measure for skeleton significance called medial persistence. They form medial per-

sistence based on the observation that local descriptors are easy to cave into boundary

noise while global descriptors are hard to compute. They measure the medial per-

sistence by looking at the elapsed time during the removal process and make the

observation that a discrete voxel persists in an isolated form. For example, an edge

could survive if it is not adjacent to any face meaning that it is isolated. Also, the

method can determine the medial persistence of the voxels in a single thinning pass.

In 2D, they observe that, over the iterations, thin and long edges and faces centered

at wide parts take longer to disrupt. They apply the same reasoning to 3D shapes and

see that it works on 3D shapes, too.
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Figure 2.2: Example of a ball inscription method.

When we compare our method with the thinning methods, we see that our method

does not involve the removal of the simple points, namely, thinning. Moreover, in our

method, the skeleton points and their connections are found at the same time whereas

the thinning methods require post-processing for grouping skeletal points and forming

a skeletal graph by connecting them. Also, as a feature common to our method and

the thinning methods, we see that both involve pruning and re-connection steps.

2.2 Geometric Methods

Geometric methods, contrary to other methods that we mention, work on meshes and

scatter points to extract the skeleton. We can divide the geometric methods under

two sub-categories: the popular medial-axis/surface-based methods, and Reeb graph-

based methods.

Considering medial-axis/surface-based methods, we see that some methods use the

Voronoi diagram while others use the ball inscription method that works by inserting

a ball into the shape and shifting it along the skeletal curve, while also changing the

size of the ball as shown in Figure 2.2. The earlier versions of this method produce

good results if boundary noise is not a problem. Otherwise, the ball inscription meth-

ods contact every surface point, which results in including every small noise in the

skeleton. Intuitively, shapes with more details create a performance drop. Since this

idea is computation heavy, the authors in [16] utilize the GPU, make ball calculations

in parallel, and claim that they speed up over two times faster than earlier works with

lower memory usage. These methods require curve thinning algorithms since their
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usual output is medial surface.

The authors in [7] leverage Voronoi diagrams where they first re-mesh the shape via

edge-split and edge-collapse to obtain simplified mesh connections and then create

Voronoi poles and skeletonize the shape with mean curvature flow. After initial me-

dial skeleton is calculated, iterative mesh contraction begins and with that smaller

intermediate medial skeletons are created. Mesh contraction, if continued until the

end, would result in a point but, in the method, they counterbalance contraction force

with attraction forces that are directed towards the vertices from previous time steps.

The balance is achieved with several parameters, which are mentioned briefly in § 5.3.

With the last iteration of mesh contraction, a final edge collapse is applied to extract

curve skeleton.

A strategy we do not mention until now is the divide-and-conquer approach. In [17],

the authors first segment the shape based on the k-means fuzzy clustering algorithm

where the geodesic distance between vertex pairs is used as the dissimilarity measure.

After segmentation, every vertex is assigned to a group. Then, the cut planes and the

center points are calculated with a rotational symmetry axis based method in order to

form the curve skeleton branch inside the group. Since the groups are disconnected,

a Laplacian smoothing step is implemented to connect the endpoint of the branches

where the connections may form thick joints. Thinning is performed for the joints

and the centers of the joints are shifted so that a re-centering is made. The method

ends with sub-sampling from the skeleton and connecting sample points with short

curved segments.

A Reeb graph uses Morse theory to encode the topology of the original shape as a

1D structure. The topology is acquired by “following the evolution of the level sets

of a real-valued function", which is defined on the respective shape and made explicit

such that the curve skeletons are formalized without a basis on symmetry [11, 10].

An example method [18] for the discrete Reeb graph, which means that the graph can

be extracted from a discrete surface with gaps and noise, slices shape from bottom

to top horizontally and works on the 2D plane, created by the slicing step, considers

each curve as a node in the graph and connects nodes if the curves in the adjacent

slices are connected. Formed node set, is the method’s skeleton.
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Comparing our method with the geometric methods, input is the most apparent differ-

ence since geometric methods works on meshes and scatter points while our method

works on voxels. Geometric methods may have re-connection step, as is ours, which

could be in different forms but the one mentioned in this chapter is done via Laplacian

smoothing also geometric methods could have pruning steps.

2.3 Distance or General Field Methods

We categorize the related works based on the first step they apply to skeletonize the

given shape. Under this category, we have methods that start with the field calculation

and continue with thinning, pruning, or re-connection. Our method is in this category

because it starts with the calculation of vk field and then continues with pruning and

re-connection steps as we explain in Chapter 3 and 4.

Some of the methods in this category skeletonize the shapes using their distance trans-

form that assigns each shape point its distance to the nearest boundary [10]. Gener-

ally, the methods that use the distance transform create a large pool of skeleton points

that need to be pruned. However, pruning may eliminate valuable connections so that

an extra re-connection step is needed [11].

One method [19] that involves some of the mentioned steps takes voxel images or

volumes as the input and outputs surface and curve skeletons. The method lever-

ages <3,4,5> weighted distance transform called chamfer technique [20] and has the

adjacent element order <f,e,v> as weights, each element representing the number of

faces, edges and vertices along the way to the boundary. After the distance transform

is computed, voxels are grouped based on the values they have and whether they are

simple points or not, are found out. The method continues with eliminating voxels

and creates a subset that potentially has curve skeleton points in it. While the method

preserves complete topology over surface skeletons, it can only preserve partial topol-

ogy over curve skeletons. It then applies to thinning in order to calculate the curve

skeleton.

Another method [4] extracts curve skeletons as a subset of surface skeletons which

almost guarantees that the curve skeleton will be centered because points in the curve
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Figure 2.3: Origins of the trajectories form the collapse of p [4]

skeleton are matched with surface skeletons based on the distance. They introduce

the collapse measure which is robust to noise, produces connected skeletons, and

describes shapes at different levels. Collapse measure means that mass in the object

boundary is advacted onto and then along the skeleton, and the total advacted mass

through the point is it’s collapse measure. In Figure 2.3 we show the point p’s collapse

measure calculation concept on a 2D rectangle where R is root, S is skeleton, δΩ is

the boundary and a and b is our equi-distant points. They approximate this measure

without simulation but with direct computation. Method continues with thresholding

where some points are eliminated and the remaining points are the simplified skeleton

result of the method.

In [21], the method [22, 23] extracting local symmetry axis of 2D shapes is extended

to shapes in arbitrary dimensions including 3D shapes. The method involves first

computing a smooth field inside the shape domain and then determining skeleton

points based on the properties of the level curves/surfaces of the field passing through

the points. The method is able to extract both surface and curve skeleton of 3D shapes.

When we compare our method with the last method we mention, we see that both of

the methods determine skeleton points based on the level curves/surfaces of a smooth

field. For the other methods, we see that after the fields are calculated, the methods

go through pruning and re-connection steps but, to the best of our knowledge, our

method is the only one exploring the shape domain by carving it from the inside

out.
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CHAPTER 3

A FAMILY OF SMOOTH DISTANCE TRANSFORMS

In this chapter, first, we present what we call as vk field, which denotes a family

of smooth distance transforms defined on incrementally carved forms of the shape

domain. Then, we discuss its connection to the part-coding distance transform of

Tarı [1, 2].

3.1 vk Field

Let shape be an open set Ω with boundary ∂Ω. vk for k = 0, 1, 2, 3, . . . , kmax is an

ordered family of fields defined on incrementally carved shape domains Ωk where

Ω0 = Ω and Ωk ⊂ Ωk−1 for k = 1, 2, 3, . . . , kmax.

Each vk : Ωk → R is a normalized version of a smooth distance field obtained by

solving the following Partial Differential Equation (PDE) on the respective shape

domain Ωk

∆vk −
1

|Ωk|2
vk = −1 subject to vk |∂Ωk

= 0 (3.1)

where ∆ is the Laplace operator, ∂2

∂x2 +
∂2

∂y2
in 2D and ∂2

∂x2 +
∂2

∂y2
+ ∂2

∂z2
in 3D, and |Ωk|

denotes the number of shape points in Ωk. We normalize each vk field by dividing its

values to its maximum value.

Each vk is minimal on the boundary ∂Ωk and increases towards the center of Ωk.

This is due to that the solution of (3.1) is a scaled version of the field minimizing the

following energy:

argmin
vk

∫
Ωk

(
|∇vk|2 + a2 (1− vk)

2

)
dωk subject to vk

∣∣∣∣
∂Ωk

= 0. (3.2)
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We see that each vk field is smooth due to the first term in the energy, close to 1 inside

Ωk due to the second term in the energy, and 0 on ∂Ωk due to the boundary condition.

Thus, each vk is a smoothed form of the characteristic function which takes 0 on ∂Ωk

and 1 inside Ωk where the smoothing degree is inversely proportional to the parameter

a2. We keep the smoothing degree of each vk high by setting a2 to a very small value

(1/|Ωk|2) which depends on the size of the corresponding shape domain Ωk.

Each vk suggests a binary partitioning of the respective shape domain Ωk via water-

shed boundary Wk formed between enclosing boundaries of Ωk, namely, Wk−1 and

∂Ω, where each Ωk is constructed by subtracting enclosure of Wk−1 from Ωk−1 that

is Ωk = Ωk−1 \ enclosure(Wk−1).

In Figure 3.1, we illustrate vk field construction via an example shape. Ω0 is equal to

Ω and, hence, v0 is defined on the whole shape domain. W0 is determined as a subset

of points where local maxima of v0 are attained. Regarding the example in Figure 3.1,

W0 is defined as the global maximum point of v0 (see red point in Figure 3.1 (a)).

Ω1 is constructed by subtracting W0 from Ω0 which implies that Ω1 corresponds to

the region bounded by W0 and ∂Ω that is ∂Ω1 = W0 ∪ ∂Ω. v1 is minimal on ∂Ω1 and

increases towards center of Ω1. Accordingly, W1 is extracted from v1 as the watershed

boundary between W0 and ∂Ω (see red contour in Figure 3.1 (b)).

The same procedure is followed for each of the remaining levels k = 2, 3, . . . , kmax.

Ωk is constructed by subtracting enclosure of Wk−1 from Ωk−1. ∂Ωk = Wk−1 ∪ ∂Ω

since ∂Ωk−1 = Wk−2 ∪ ∂Ω and Wk−1 lies between Wk−2 and ∂Ω. vk is minimal on

∂Ωk and increases towards center of Ωk. Accordingly, Wk is extracted from vk as

the watershed boundary between Wk−1 and ∂Ω. In Figure 3.1 (a)-(f), we visualize vk

field at sample levels k = 0, 1, 2, 3, 4, 5 where vk field of this shape has a total of 27

levels (kmax = 27).

The watershed boundary, and hence carving, expands from level to level. The maxi-

mum level is reached when the watershed boundary no longer expands that is Wkmax+1 =

Wkmax . In Figure 3.1 (g), we present carved regions overlaid onto each other show-

ing expansion of the watershed boundary throughout all of 27 levels for the example

shape.
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Notice that level curves of each vk divide the corresponding shape domain Ωk into

meaningful regions each shown using a different color in Figure 3.1 (a)-(f).

3.1.1 Extraction of Watershed Boundary

Watershed boundary can be described as follows. Consider a topographic relief which

is flooded by placing the sources at the local minima. The level of the flood is uniform

over the relief and increases with uniform speed. The moment that the floods filling

two distinct catchment basins start to merge, a dam is built in order to prevent mixing

of the floods. The union of all dams constitutes the watershed boundary.

In Figure 3.2, we illustrate v2 shown in Figure 3.1 (c) as a topographic relief. Notice

that there are two local minima, one in the background outside the shape domain and

one in the central carved region. Red barrier in Figure 3.2 (bottom) illustrates the

watershed boundary between these two local minima.

In order to obtain the watershed boundary, we utilize MATLAB’s watershed function

in which the method presented in [24] is implemented.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.1: (a)-(f) vk field at sample levels k = 0, 1, 2, 3, 4, 5 where kmax = 27.

Wk is denoted via red contour. (g) Carved regions overlaid onto each other showing

expansion of the watershed boundary throughout all of 27 levels.
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Figure 3.2: v2 in Figure 3.1 (c) shown as a topographic relief where W2 is illustrated

via red barrier at the bottom.
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3.1.2 Limitation: Shape Resolution

As illustrated in Figure 3.3, low shape resolution prevents expansion of the watershed

boundary through the entire shape domain. This is due to that, at low resolutions,

discretization affects both computation of vk field and approximation of the watershed

boundary significantly. We see that the entire shape domain is covered when we

upscale the shape as in Figure 3.3 (right).

In order to overcome this limitation, we could upscale the shape until the correspond-

ing vk field covers the whole shape domain. This is one of the future works.

3.1.3 Applicability to 2D and 3D Shapes

vk field construction involves two main steps that are computation of the smooth

distance field and extraction of the watershed boundary, both of which are applicable

to 2D and 3D shapes.

3.1.4 Different W0 Configurations

It is possible to start carving from more than one central point by determining W0

to consist of more than one local maximum point of v0. For example, considering

dumbbell-like shape in Figure 3.4 (b), we start carving from two central points since

its body contains two centers. Also, considering a composite shape such as frog shape

in Figure 3.4 (c)-(d), points in the center of ligature zones where multiple shape parts

are connected to each other can be added to W0 (see Figure 3.4 (d)).
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Figure 3.3: Low shape resolution prevents expansion of the watershed boundary

through the entire shape domain. The right shape is obtained by upscaling the left

shape 1.5 times.

(a) (b)

(c) (d)

Figure 3.4: Incremental carving of the shape domains where the number of centers

from which the carving is initiated is (a) one, (b) two, (c) one, and (d) five.
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3.2 The Connection to the Distance Transform of Tarı [1, 2]

In 2009, Tari proposed a part-coding distance field [1, 2] which is called the fluc-

tuating distance field since it is a smooth distance field composed of both positive

and negative values (see Figure 3.5 (a)). The fluctuating distance field is computed

by solving a dense linear system of equations modeling local and global interactions

between the shape points. Accordingly, the field exhibits highly nonlocal behavior

(see Figure 3.5 (b)). Inner zero-level curve divides the shape into central (positive)

region corresponding to a coarse form of the shape body and peripheral (negative)

region including limbs, protrusions, boundary texture and noise. Level curves of the

field inside negative and positive regions provide further partitioning of the shape. In

Figure 3.5 (b), we see that level curves of the field encode meaningful shape parts

corresponding to body, head, and each of legs and arms.

Considering vk field presented in this chapter, central/peripheral separation of the

shape domain is achieved by its incremental carving. By solving the PDE 3.1 on

incrementally carved forms of the shape domain, we obtain a shape flow from the

inside out. Carving starts from inner point(s) and proceeds gradually until the whole

shape domain is covered. Carving at each level is guided by the smooth distance field

obtained via solving the PDE 3.1 on the respective shape domain. Despite its local

computation, level curves of the field exhibit highly nonlocal behavior by providing

partitioning of the carved shape domain. Carving expands towards the field extrema

which roughly mark part centers.

Observe that the shape model obtained via v4 shown in Figure 3.1 (e) is similar to the

one obtained via the fluctuating distance field shown in Figure 3.5 (b) as both models

provide similar partitioning of the shape domain.
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(a)

(b)

Figure 3.5: Fluctuating distance field [1, 2]. (a) 3D topographic view. (b) Level

curves where positive/negative regions are shown with red/green colors, respectively.
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CHAPTER 4

CURVE SKELETON OF 2D AND 3D SHAPES

In this chapter, we present how curve skeleton of 2D and 3D shapes is constructed

using vk field.

4.1 Constructing Curve Skeleton of 2D and 3D Shapes

Regardless of the dimension of the shape, whether it is 2D or 3D, our curve skeleton

model is computed by following the same steps for both 2D and 3D shapes. Below,

for simplicity, we describe the construction of our curve skeleton by illustrating it on

example 2D shapes.

4.1.1 Determining Skeleton Points

As shown in Figure 3.1 (also, in Figure 4.2), the enclosure of the watershed boundary

at a particular level grows to form the enclosure of the watershed boundary at the

following level. The watershed boundary at each level is expected to pass through

the local maxima of the corresponding vk field which roughly mark part centers. This

brings the idea that we can define skeleton points at each level as local maxima of vk

field (see Figure 4.1 (a)). However, the local maximum points do not always mark the

shape parts through which the watershed boundary passes. Therefore, the skeleton

points at each level k are defined as the local maximum points of vk field whose

associated parts intersect with the watershed boundary Wk. In order to illustrate this

situation, in Figure 4.2, we visualize vk field of an example 2D shape at sample levels

k = 0, 1, 2, 3, 4. Each vk is shown via its level curves. The red contour denotes the
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watershed boundary Wk. The black dots mark the local maximum points of vk. The

parts associated with the local maximum points are shown in different colors so that

they can be differentiated from each other. We see that, in v1, although there are five

local maximum points, only two of them are defined as skeleton points since the parts

associated with the remaining three do not intersect with the watershed boundary.

Similarly, in v2/v3, although there are five/seven local maximum points, only two/four

of them are defined as skeleton points, respectively, since the parts associated with the

remaining ones do not intersect with the watershed boundary.

Before checking whether the local maximum points mark the shape parts intersecting

the watershed boundary, there is another step for determining the skeleton points

reliably. It is possible that vk field has local maximum points that are unconnected

but very close to each other marking the same shape part. This situation can be

observed in Figure 4.2 (e) as there are two local maximum points marking the back

leg of the elephant. To overcome this issue, we group the local maximum points (and

their associated parts) so that two points are in the same group if the distance between

them is smaller than half of the minimum of their distances to the nearest boundary.

After grouping, the local maximum point associated with each group is chosen as the

one whose distance to the nearest boundary is the largest.

As exemplified in Figure 4.1 (a), at some levels, the watershed boundary may fail to

pass through the local maxima precisely. Thus, geodesic projection of the local max-

ima points onto the watershed boundary may be necessary (see Figure 4.1 (b)). By

geodesic projection, we mean finding the nearest point along the watershed boundary

where the distance between the local maxima point and each point along the water-

shed boundary is computed as the length of the shortest path between them through

the shape domain. Specifically, for implementing geodesic projection, we use bwdist-

geodesic function of Matlab.

4.1.2 Connecting Relevant Skeleton Points

After determining skeleton points, we need to attach relevant ones to obtain a skele-

ton model of the shape. We connect skeleton points at consecutive levels if their as-

sociated parts, which are obtained as watershed zones of the corresponding vk field,
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intersect with each other (see Figure 4.1 (c)). Given a skeleton point s at a level k,

we determine its parent as the skeleton point at the inner level k− 1 as follows. First,

we find all the skeleton points at level k− 1 whose associated parts intersect with the

associated part of s. If there is more than one such point, we choose the one closest

to the projection of the skeleton point s onto the watershed boundary Wk−1. Notice

that links from skeleton segments modeling boundary texture and noise to skeleton

segments modeling limbs or protrusions may arise.

4.1.3 Pruning

The aim of the pruning step is to remove the connections between the skeleton seg-

ments modeling boundary texture/noise and the skeleton graph modeling the shape

body, limbs and protrusions. We apply pruning by examining the link from each

skeleton point to its parent as follows. We project the skeleton point onto the wa-

tershed boundary of its parent, and we remove the link if Euclidean distance from

the projection point to the parent point is greater than Euclidean distance from the

skeleton point to the nearest point of the shape boundary ∂Ω (see Figure 4.1 (d)).

4.1.4 Reconnection

After the first pruning step we see that limb/protrusion can sometimes be disconnected

from the main skeleton (see Figure 4.3 (b)). To eliminate disconnections to main

skeleton, we come up with the following steps to connect these missing links.

• Find out if our pruned skeleton has disconnected skeleton groups based on the

calculations we describe below.

• In case there are disconnected skeleton groups, decide whether they are discon-

nected limb/protrusions or boundary noise.

• If skeleton groups should be connected, find missing connections from fully

connected skeleton, which is the skeleton created by skipping the pruning step

of our method, then apply those connections to our pruned skeleton.
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The decision to connect the disconnected skeleton groups are made based on the fol-

lowing criterias. For every skeleton group, we calculate the total area they represent.

For this representation we take every skeleton point in the skeleton group and we cal-

culate maximally inscribed circle/ball in 2D/3D at that point meaning that the largest

circle/ball we can draw without crossing the boundary of the shape, which in sum-

mary means that the radius of the circle/ball at a skeleton point is equal to its smallest

distance to the boundary as shown Figure 4.3(c). We add up these circular areas

and get the total area for the skeleton group. The group with the largest total area is

our main skeleton, our longest link. We consider that the skeleton groups with area

smaller than a given ratio κ of the main skeleton correspond to boundary texture/noise

and the rest of the skeleton groups corresponds to limbs/protrusions which should to

be connected to the main skeleton. After decision to connect these missing links are

made, we transfer our linking information to an adjacency list graph structure. By

using this graph we recursively find our missing connections and add them to the

pruned skeleton see Figure 4.3 (d).

For completeness, in Figure 4.4, we present our skeleton model after each step for the

2D shape in Figure 4.2.

In Figure 4.5, we show curve skeleton for an example 3D shape.
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(a) (b)

(c) (d)

Figure 4.1: (a) Local maxima of the family of vk fields where each point is shown

together with its level. (b) Skeleton points obtained via geodesic projection of the

local maxima points onto the watershed boundary. (c) Skeleton points at consecutive

levels are connected if their associated parts (or watershed zones) intersect with each

other. (d) Pruning of noisy links from skeleton segments modeling boundary texture

and noise to skeleton segments modeling limbs and protrusions. For this shape, re-

connection step yields the same result as pruning.
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(a) v0 (b) v1

(c) v2 (d) v3

(e) v4

Figure 4.2: (a)-(e) For a 2D elephant shape, level curves of vk field at sample levels

k = 0, 1, 2, 3, 4 where kmax = 31. In each visualization, the red contour denotes the

watershed boundary Wk, the black dots mark the local maximum points, and the parts

associated with each local maximum are shown in different colors.
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(a) (b)

(c) (d)

Figure 4.3: For a 2D hand shape, our skeleton model after each step (a) fully con-

nected result (b) pruning result (c) skeleton points and maximally inscribed circles

associated with them (d) reconnection result where κ = 1/50.
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(a) (b) (c)

Figure 4.4: For the shape in Figure 4.2, our skeleton model after each step (a) fully

connected result (b) pruning result (c) reconnection result where κ = 1/50.

(a) (b) (c)

Figure 4.5: For a 3D human shape from the dataset [5], our skeleton model after each

step (a) fully connected shape (b) after pruning step (c) after reconnection step where

κ = 1/5.
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CHAPTER 5

RESULTS AND DISCUSSION

In §5.1 and §5.3, we present and discuss our curve skeleton model computed for

several 2D and 3D shapes. For all of the results, we take κ = 1/50 unless otherwise

stated. In §5.2, we present limitations of our method.

5.1 2D Shapes

We present our results for 2D shapes under three categories, namely, rectangular

shapes, annulus, and shapes from 56Aslan dataset [3].

5.1.1 Rectangular Shapes

Rectangular shapes are the shapes that we experiment with to understand the nature of

our skeleton model. This category includes eight rectangular shapes: one square with

an odd side length, one square with an even side length, a rectangle, a rectangle with

small noise, a noisy rectangle, a smaller square added to the top-left of a larger square,

a smaller square removed from the top-middle of a larger square, and a smaller square

added to the approximately top-middle of a larger square. In Figure 5.1, we present

our skeleton model for the shapes in this category. For comparison, in Figure 5.2, we

present skeletons of the shapes obtained using bwmorph function of Matlab that uses

Medial Axis Transform (MAT). We choose MAT for comparison since it is an accu-

rate, easy-to-explain, and well-known method. Also, its available implementation in

Matlab makes the shown results reproducible.

We observe that our skeleton is similar to the MAT result for the squares and the
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rectangle (see Figure 5.1 and Figure 5.2 (a)-(c)).

Considering the rectangle with small noise and the noisy rectangle, we see that our

skeleton is not affected by the boundary noise (see Figure 5.1 (d) and (e)). Our skele-

ton is composed of a connected skeleton modeling the main shape and a number

of small skeleton segments modeling the boundary noise. However, considering the

skeletons obtained using MAT (as shown in Figure 5.2 (d) and (e)), we see that the

skeletal branches modeling the boundary noise are connected to the main skeleton

and the boundary noise affects the main skeleton making it shift towards the noisy

boundary. This behaviour of MAT makes pruning of the skeleton challenging and,

even after pruning, since the main skeleton is shifted, the resulting skeleton has left

with deformations.

For the remaining three shapes, our skeleton results are similar to MAT results (see

Figure 5.1 and Figure 5.2) (f)-(h)). Adding a small square to a larger one introduces

a new arm so that the entire shape is covered as shown in Figure 5.1 (f). Removing

a square from top-middle part of a larger square results in a symmetric skeleton as

shown in Figure 5.1 (g). Adding a square to the middle with an offset, shifts connec-

tion point of the top right skeleton branch and connects it one level outer than the top

left branch as shown in Figure 5.1 (h).
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(a) Square with side length 499 (b) Square with side length 500

(c) Rectangle (d) Rectangle with small noise (with κ = 1/20)

(e) Noisy rectangle (f) Square added to side

(g) Square removed from middle (h) Square added to top

Figure 5.1: Our skeleton model for rectangular shapes.
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(a) Square with side length 499 (b) Square with side length 500

(c) Rectangle (d) Rectangle with small noise

(e) Noisy rectangle (f) Square added to side

(g) Square removed from middle (h) Square added to top

Figure 5.2: Skeletons obtained using Medial Axis Transform (MAT) of the shapes.
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5.1.2 Annulus

Figure 5.3: Our skeleton model for an example annulus shape.

Annulus is another shape that makes us curious because it is a shape with a hole

and its boundary is jagged and noisy due to its discretization in a regular 2D grid.

We present our skeleton model for an example annulus shape in Figure 5.3. We

see that, starting from the middle of the bottom of the shape, there are two skeleton

branches passing through the shape where the left branch is in the clockwise direction

and the right one is in the counter-clockwise direction. These two branches meet

at a point in the middle of the top of the shape and then they continue to grow in

opposite directions so that they reach the shape boundary. We see that our skeleton

model is composed of a piece-wise continuous skeletal line capturing the centerline

of the main shape and a number of small skeletal segments representing the boundary

texture/noise. However, our skeleton model is not topology-preserving. In order to

make our skeleton topology-preserving, the skeleton branches meeting at a common

point should be connected and this is one of the future works.
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5.1.3 Shapes from 56Aslan dataset [3]

56Aslan dataset [3] consists of silhouettes from fourteen shape categories where there

are four shapes from each category. The shapes within the same categories have dif-

ferences with respect to their orientation, scale, articulation, and boundary detail. Our

skeleton results for all of the shapes from 56Aslan dataset are presented in Figures 5.4

and 5.5.

For each shape, our skeleton model is composed of a connected skeletal graph mod-

eling the shape body and the limbs/protrusions attached to it. We observe that our

skeleton model is robust to boundary texture/noise. Moreover, for the shapes with

boundary texture/noise, our method yields a number of disconnected skeletal seg-

ments modeling the boundary texture/noise (see Figure 5.6).

Overall, we observe that our skeleton results are consistent for the shapes within the

same categories in spite of the differences between the shapes as mentioned above.

The difference between the skeletons of the shapes within the same categories is due

to the order and the location in which the skeletal branches associated with the limb-

s/protrusions are connected to each other while reaching the initial skeleton point in

the middle of the shape body. In order to better illustrate this situation, in Figure 5.7,

we re-present our results for the first two horse shapes in Figure 5.4. For the first

horse shape in Figure 5.7 (a), the skeletal branches modeling the front legs are first

connected to each other. After growing towards the center of the body, the resulting

skeletal tree is connected to the branch modeling the head. However, for the sec-

ond horse shape in Figure 5.7 (b), the skeletal branches modeling the front legs and

the head are connected at the same time. The reason behind this difference is that

the front legs of the first horse are occluding each other so that they branch out later

compared to the front legs of the second horse.

As mentioned in Chapter 3, when the shape resolution is very low, vk field and, hence,

our skeleton model does not cover thin sections of the shapes such as legs of some

horse and cat shapes (see the results for the third horse shape in Figure 5.4 and the

second cat shape in Figure 5.5).
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Figure 5.4: Our skeleton model for 2D shapes from the first seven categories of

56Aslan dataset [3].
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Figure 5.5: Our skeleton model for 2D shapes from the remaining seven categories

of 56Aslan dataset [3].
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Figure 5.6: In addition to a connected skeletal graph modeling the shape body and

limbs/protrusions attached to it, our method yields a number of disconnected skeletal

segments modeling the boundary texture/noise.

(a) (b)

Figure 5.7: For the first two horse shapes in Figure 5.4, skeleton branches modeling

the front legs are connected differently to the main skeleton.
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5.2 Limitations of Our Method

The limitations of our method are as follows:

• It requires a regular 2D/3D grid as the input where the pixels/voxels belonging

to the shape is 1 and the remaining background pixels/voxels are 0.

• When the resolution of the input shape is low, vk field and, hence, the skeleton

does not cover the whole shape.

• It is not topology-preserving i.e. topology of the shape and the skeleton might

not be the same.

• It does not guarantee the centeredness of the skeleton.

• The skeleton might not be smooth i.e. it might have sharp turns.

• It involves a parameter κ, which is used to determine details of the shape rep-

resented by the skeleton.

5.3 3D Shapes

We present our results for 3D shapes under two categories, namely, shapes composed

of rectangular prism and general shapes.

5.3.1 Shapes Composed of Rectangular Prism

This category is composed of the shapes that we experiment with to test the behav-

ior of our skeleton model and to address the shapes that are challenging to other

skeletonization methods. This category includes five shapes composed of rectangu-

lar prism: cube, rectangular prism, rectangular slab, a shape where two cubes are

combined, and a comb-like shape which is a combination of rectangular prisms. In

Figure 5.8, we present our skeleton model for the shapes in this category.

We observe that our skeleton results for cube and the rectangular prism are similar to

the results in 2D shapes of square and rectangle respectively.
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Rectangular Slab refers to a rectangular prism where one of its dimensions only

serves the purpose of depth. In [25], the authors mention that, for any curve skeleton

method, slab is the most difficult object, because, while we expect methods to form

curve skeletons, they instead produce medial surfaces. We see that our method treats

rectangular slab as a regular rectangular prism and produces a skeleton accordingly

as shown in Figure 5.8 (c)-(d).

Considering the shape with two cubes combined shown in Figure 5.8 (e)-(f), we see

that our skeleton method handles the shape as it handles a cube or a rectangular

prism, thus our skeleton result reflects the fact that the shape is composed of com-

bination of two cubes. However considering the skeletons obtained using Starlab

program from the work [7] in Figure 5.9, we see that Starlab requires four param-

eters named, omega_L_0, omega_H_0, omega_P_0 and edgelength_TH, and de-

pending on these parameters it produces either missing skeleton branches or extra

skeleton branches. For all the skeletons produced by using Starlab, we use the same

values for the first three parameters because changing their default values results in

not producing a skeleton at all for this shape. Tuning the edgelength_TH parameter

results in different skeleton calculations as shown in Figure 5.9 (b)-(e), with larger

edgelength_TH values like 0.00421 creates only one curve while decreasing this

value gradually introduces new branches to the skeleton, looking at the result pro-

duced with edgelength_TH = 0.00121 skeleton branches represent the shape itself.

For the comb-like shape shown in Figure 5.8 (g)-(h), our skeleton model produces a

skeleton that looks like actual combination of its smaller parts which all five of them

are similar to rectangular prism’s skeleton that we produce.

5.3.2 General 3D Shapes

General 3D shapes are the shapes that we include to understand our method’s strengths

and weaknesses on the shapes of objects from different domains.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.8: Our skeleton results for (a) Cube (b) Rectangular Prism (c)-(d) Rect-

angular slab from two different viewpoints (e)-(f) Shape that looks like two cubes

combined (with κ = 1/100) from two different viewpoints (g)-(h) Comb like shape

from two different viewpoints.
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(a) (b)

(c) (d)

(e)

Figure 5.9: Since Starlab is an external program, we are not able to put the re-

sulting skeletons on the top of the shapes for visualization purposes. (a) Original

shape for visualization. (b) Result with edgelength_TH = 0.00421. (c) Result with

edgelength_TH = 0.00321. (d) Result with edgelength_TH = 0.00221. (e) Result

with edgelength_TH = 0.00121.
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5.3.2.1 Articulated Objects

The first group of this section is composed of articulated objects i.e. objects with

limbs/protrusions attached to a body e.g. animals, human, hand and etc. (see Fig-

ure 5.10 and Figure 5.11). Overall, we observe that main shape components such as

body, legs, head, and tail of animal shapes (Figure 5.10 (a)-(h)), body, legs, head,

ears and tail of rabbit shape (Figure 5.10 (i)), body, arms, legs, and head of human

shapes (Figure 5.10 (j) and Figure 5.11), and fingers, wrist, and palm of hand shape

(Figure 5.10 (k)) are successfully captured by our skeleton model.

The shapes in Figure 5.10 (c) and (f) correspond to different poses of a dinosaur

shape where the shape in Figure 5.10 (f) has a substantial amount of boundary noise.

We see that our results for these two objects are similar and our skeleton model is

not affected by the boundary noise. Instead, the boundary noise is modeled via tiny

skeleton pieces that could be easily discarded since they are not connected to the main

skeleton.

Considering the horse shapes in Figure 5.10 (g) and (h), their skeletons are very sim-

ilar but the skeleton of the second horse has sharp corners. This difference is due to

that the surface of the second horse shape has sharp corners and it is not as smooth as

the surface of the first horse.

For better visualization, the skeleton of the woman in Figure 5.10 (j) is shown from

two different viewpoints. The woman has a long ponytail whose middle part is com-

bined with her right shoulder. Thus, there are disjoint skeletal branches modeling the

beginning and the end of the ponytail. Since the end of the ponytail is as if it is pro-

truding from the right shoulder, its skeletal branch is connected to the skeletal branch

passing through the shoulder.

In Figure 5.11, we present our results for the 3D shapes from human category of the

dataset [5]. We see that the skeletons obtained for different shapes or different poses

of the same shape are consistent with each other except that arms of the human shape

in Figure 5.11 (s) are not represented since they are merged with the body.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 5.10: Our skeleton results for articulated 3D shapes.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (r) (s) (t) (u)

Figure 5.11: Our skeleton results for 3D shapes from human category of the

dataset [5] where κ = 1/60 for (c), and κ = 1/50 for the remaining results.
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5.3.2.2 Objects from Medical Field

The second group of this section is composed of objects from the medical field such

as coronary artery, bronchial tree, colon, humerus, and ball-and-socket joint (see Fig-

ure 5.12).

For the coronary artery and the bronchial tree, our results are visualized from four

different viewpoints (see Figure 5.12 (a)-(d), and (e)-(h), respectively). The extracted

curve skeleton of the coronary artery in Figure 5.12 (a)-(d) covers all vascular struc-

tures including very small arteries branching off the main artery. Our skeleton result

for the bronchial tree shown in Figure 5.12 (e)-(h) preserves the order of the branches

and it covers all branches of the tree except the region encircled with a red contour

in Figure 5.12 (h). This is due to that two branches are combined to form a ring-like

structure in that region and the skeleton branches coming from opposite directions

are not linked to each other similar to the case in 2D annulus shape.

In Figure 5.12 (i)-(j) and (k)-(l), we present our results for the colon object in two

different settings κ = 1/15 and κ = 1/50, respectively. The result in each setting

is visualized from two different viewpoints. We see that the skeleton obtained with

a smaller κ has less number of branches so it is possible to adjust the level of details

of the skeleton by changing κ. In both settings, the main skeleton passes through

the object from one end to the other end except the small part encircled with a green

contour (see Figure 5.12 (j)), which is due to low resolution of the shape volume

in that region. Also, there is a hole in the bottom of the shape encircled with a red

contour. Our skeleton does not cover all the regions around the hole since it is not

topology-preserving.

Considering our results for the humerus, and the ball-and-socket joint in Figure 5.12

(m) and (n), we see that our method enables modeling both the main axis of the shapes

and all the bumps and the protrusions attached to them.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 5.12: Our skeleton results for objects from medical field (a)-(d) coronary

artery (κ = 1/150), (e)-(h) bronchial tree, (i)-(j) colon (κ = 1/15), (k)-(l) colon (κ =

1/50), (m) humerus, and (n) ball-and-socket joint.
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5.3.2.3 Human-made Objects

The third group of this section is composed of human-made objects such as airplane,

biplane, helicopter, hammer, screwdriver, bottle, bench, rocker arm, and rotor (see

Figure 5.13).

In Figure 5.13 (a)-(c), we see that all the parts of airplane, biplane, and helicopter

objects along with their connections are successfully represented by their skeletons.

The only exception is that the skeleton of the helicopter in Figure 5.13 (c) is not con-

nected in the region encircled with a red contour (also, in the region of its symmetric

counterpart) due to the lack of topology-preserving property of our method. Also,

notice that since the objects are symmetric, their extracted skeletons are symmetric as

well.

The skeleton of hammer, screwdriver, and bottle object in Figure 5.13 (d)-(f) involves

a long skeletal line corresponding to the symmetry axis of each object. Also, there

are skeletal branches connected to the main skeletal line modeling the base of each

object and the head of the hammer including both of its claws.

Considering the bench object in Figure 5.13 (g), which looks like a bent and thin

rectangular prism, the resulting skeleton is also in accordance with the skeleton of

a rectangular prism (see Figure 5.8 (b)). The skeleton of the rocker arm object in

Figure 5.13 (h) provides a compact representation of it except that the skeleton must

be connected in the region encircled with a red contour and this is one of the future

works. The rotor in Figure 5.13 (i) is a thin object with many holes in it. We see that

our skeleton covers every detail of the object.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.13: Our skeleton results for human-made objects (a) airplane (κ = 1/250),

(b) biplane (κ = 1/100), (c) helicopter (κ = 1/100), (d) hammer, (e) screw-

driver (κ = 1/15), (f) bottle, (g) bench (κ = 1/100), (h) rocker arm, and (i) rotor.
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5.4 3D Result Comparison

In this section, we present our results in comparison with other skeletonization meth-

ods.

In Figure 5.14, we present the coronary artery object in Figure 5.12, our skeletoniza-

tion result, and the result obtained using [6, 7]. We see that all vascular structures

including very small arteries are represented in our result. However, the parts in the

regions encircled by red contours in Figure 5.14 (a) are missed by the method [6, 7].

This is due to that the method [6, 7] involves boundary contraction and it reduces

small protrusions or bumps into a single point [17].

In [11], the authors present a survey of the related works on extracting curve skele-

ton of 3D objects. They divide the methods into four classes, namely, the thinning

methods, the methods using distance field, the geometric methods, and the methods

using general fields. They provide an implementation of one method from each of

the four classes. They note that only the core part of each method is implemented

since it is very difficult to obtain the full implementation as each method involves

several thresholds and parameter values. In Figure 5.15, we present our skeletoniza-

tion result and the results of the three methods provided by [11] for the colon object

in Figure 5.12. We do not present the result of one of the methods provided by [11]

since we are not able to compile it. However, its result for the colon object could be

seen in [11]. Also, we are not able to present the result of [6, 7] for the colon object

because the program crashes when we run it using its default parameters.

In Figure 5.15, we present the results from two different viewpoints where the results

in the same row are visualized from the same viewpoint. The geometric method that

uses the orientation-dependent height function and Reeb graph produces a strange

result (see Figure 5.15 (b)) since it requires its input oriented in the natural up-down

direction. Even if an orientation-independent function is used, it is still possible that

skeletal lines are outside the shape volume [11]. Considering the result of the thinning

method in Figure 5.15 (c), we see that it is sensitive to the boundary noise and, hence,

there are extra skeletal branches towards the details of the shape boundary. Also, note

that the thinning methods require post-processing involving pruning and grouping the
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(a) (b) (c)

Figure 5.14: (a) Coronary artery object, (b) our result (κ = 1/150), and (c) the result

obtained using [6, 7].

skeletal points. The result of the potential field method in Figure 5.15 (d) is clean and

smooth but it involves additional connections between the skeletal lines modeling

different parts of the shape. Considering our result in Figure 5.15 (a), we see that it is

robust to boundary noise and it does not involve additional connections. However, our

skeleton model does not preserve the topology of the shape and it does not represent

the small part of the object at the bottom due to the low resolution of the shape volume

in this part.
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(a) (b) (c) (d)

Figure 5.15: For the colon object, (a) our method, (b) geometric method, (c) thinning

method, and (d) method using potential field.
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CHAPTER 6

CONCLUSION

In this thesis, we present vk field as a new family of smooth distance fields. The field

at each level is obtained by solving the same PDE at the corresponding shape domain.

However, the fields at different levels are not the same since the shape domain at level

k is obtained by carving the shape domain at its previous level k−1 where the carving

is guided by the field at level k − 1. v0 is defined on the whole shape domain and the

initial carving is done from the point where v0 attains its maximum value. In this way,

the carving starts from inside the shape domain. In later levels k > 1, the carving is

guided by the watershed boundary between the carved region inside the shape and the

background region outside the shape considering the field at the corresponding level.

The maximum level is reached when the carving stops i.e. either the whole shape

domain is carved or the carving can not proceed into very thin regions.

We observe that level curves of the field at each level provide partitioning of the

corresponding shape domain similar to the part-coding distance field [1, 2]. We also

observe that the carving of the shape domain at level k proceeds toward the center of

the parts provided by the level curves of the field at level k. Based on these properties

of vk field, we develop a new method for obtaining a skeletal representation of shapes.

Our skeletonization method involves a sequence of intuitive and easy-to-understand

steps with a single intuitive parameter κ controlling the level of shape details covered

by the resulting skeletal representation. Our constructions are valid for both 2D and

3D shapes.

We experiment with our skeletonization method on several 2D and 3D shapes from

different domains. It produces a thin and connected skeletal graph modeling the main

shape components and a collection of skeletal segments modeling the boundary tex-
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ture/noise, which could be easily discarded since they are not connected to the main

skeleton. We show that our method produces compatible results when the shapes

differ with respect to their orientation, scale, articulation, and boundary detail.

Our skeletonization method does not preserve the shape topology and this is one of

the future works. Another future work is to overcome the limitation of the low shape

resolution by considering the input shape in increasing resolutions until the whole

shape domain is covered. Using the proposed method in an application such as shape

matching, shape decomposition, virtual navigation is another future direction.
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